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The purpose of this study was to compare estimation accuracy of an accelerometer (Lifecorder 
Ex: LC) and a wristband type accelerometer (ViM sports memory: ViM) during non-locomotive 
activities. We chose fifteen activities. Fourteen young adults (7 males and 7 females) participated 
into 8 activities at least. An indirect calorimeter (MetaMax 3B) measured metabolic equivalent 
(MET) throughout all activities. Participants wore the LC on their hip and the ViM on non-
dominate their wrist to estimate MET. To estimate MET, LC derivations (LC1 and LC2) were used 
and ViM derivations (ViM1 and ViM2) were used. Differences between MET and each estimates 
were analyzed by 2-way repeated ANOVA model in mixed model. Both of the LC1 and the LC2 
significantly underestimated MET during most of activities (p ≤ 0.008). The ViM1 was significantly 
different from MET for all activities (p < 0.001), while the ViM2 showed not significant differences 
to MET during Dynamic stretch, Darts, Active video game (boxing), and Walking (p ≥ 0.162). These 
results show that the ViM can assess MET during non-locomotive activities more accurate than the 
LC and the LC consistently underestimates MET during all of non-locomotive activities.
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Comparison of Wristband Type Activity Monitor and Accelerometer 
during Locomotive and Non-locomotive Activity

1. Introduction

Accelerometers are well known as an objective and 
useful method to assess physical activity during daily 
living. Today, there are accelerometers of many types 
(Brage et al., 2003; Campbell et al., 2002; Eston et al., 
1998; Freedson et al., 1998; King et al., 2004; Kumahara 
et al., 2004a; Ohkawara et al., 2011; Rowlands et al., 
2004). Each device has different features (number of axes, 
dynamic range, epoch, sampling frequency, frequency 
response). Although the accuracies of accelerometers 
differ according to the features of each device, the 
accuracy of accelerometers commonly deteriorates during 
activities except walking and running (non-locomotive 
activity). Accelerometers are unable to measure metabolic 
equivalents (MET) during non-locomotive activities, 
such as arm activity, standing posture, vertical work (i.e., 
stair climbing or uphill walking), or non-weight-bearing 

activity (e.g. bicycling) (Chen and Bassett, 2005). The 
main cause of the deterioration is that accelerometers 
cannot detect the change of relationship between MET 
and accelerometer outputs for walking and running 
(locomotive activity) and non-locomotive activity and 
several methods have been investigated to improve their 
accuracy (Brage et al., 2005; Brage et al., 2004; Crouter 
et al., 2006; Crouter et al., 2010; Fruin and Rankin, 2004; 
Ohkawara et al., 2011).

The ViM sports memory wristband (ViM; Microstone, 
Saku, Japan) that includes a uniaxial accelerometer 
and a gyro-sensor is a relatively new device. The 
device is designed to distinguish walking, running, 
and non-locomotive activities using these exercises’ 
respective angular velocity and vertical acceleration 
of arm movements and their periodicity. In a previous 
study, Takahashi et al. (2009) reported that during non-
locomotive activities, the ViM can estimate physical 
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activity with smaller errors than the Lifecorder EX 
(LC; Suzuken Co. Ltd., Nagoya, Japan), which is 
known as a valid and accurate accelerometer (Abel et 
al., 2008; Crouter et al., 2003; Kumahara et al., 2004a; 
Takahashi et al., 2012). However, this device significantly 
overestimates energy expenditure by 24–74% during 
moderate walking. The cause of the problem was 
the estimation model in the manufacturer’s software 
(Takahashi et al., 2009). Subsequently, the accuracy of 
the ViM was improved during walking by recalibrating 
the relationship between energy expenditure (Takahashi 
et al., 2010). The recalibrated model showed errors of less 
than 13.0% during locomotive activity.

Given the features of the ViM and results reported by 
previous studies, the ViM appears to be a good device for 
non-locomotive activities. However, the evidence that the 
ViM is better than a conventional accelerometer during 
non-locomotive activity is limited in only activities of 
two types: static stretch and hop-scotch (Takahashi et al., 
2009). Therefore, the accuracy of the ViM was examined 
by comparing it with the LC during locomotive and non-
locomotive activities.

2. Material and Methods

2.1. Participants

Seven Japanese men (age 20.9±0.3 years, height 
169.0±5.0 cm, weight 63.5±8.9 kg, BMI 22.2±2.5 kg·m-2) 
and 7 women (age 20.7±0.6 years, height 163.7±7.7 cm, 
weight 56.5±5.6 kg, BMI 21.1±2.0 kg·m-2) with no regular 
training experience voluntarily participated in this study. 
The participants were asked to refrain from alcohol use or 
strenuous physical activity for 24 h before exercise tests, 
and from food or caffeine during the 2 h preceding the 
study. Written informed consent was obtained from all 
participants before exercise tests. The study protocol was 
approved by the Human Subjects Committee of Tohoku 
Gakuin University.

2.2. Experimental design

Participants performed various leisure and sporting 
activities divided into four routines. When choosing 
activities, we considered the following points: 1) activities 
for exercise training, 2) activities as a leisure activity that 

are performed frequently, and 3) activities that have not 
been described in reports of previous studies. We chose 
“sports and leisure activities” as a non-locomotive activity 
rather than “free-living activities” because there are 
few studies that reported Japanese MET during “sports 
and leisure activities”. Because features of “free-living 
activity” and “sports and leisure activities” measured 
by an accelerometer are almost equivalent (Crouter 
et al., 2006; Crouter et al., 2010; Freedson et al., 2011), 
our data appear to be able to be applied to the whole of 
non-locomotive activities although we chose “sports and 
leisure activities”. Finally, the following 16 activities were 
chosen. 
1) Routine 1: Kendama, Active video game (Nintendo 

Wii Sports, tennis; Nintendo Co. Ltd., Kyoto, Japan), 
Dynamic stretch (radio calisthenics first and second), 
and Jump rope

2) Routine 2: Static stretch, Active video game (Nintendo 
Wii Sports, baseball), Harvard step test, and Table 
tennis

3) Routine 3: Darts, Ball juggling, Active video game 
(Nintendo Wii Sports, boxing), and Bicycle pedaling at 
a work rate of 100 W.

4) Routine 4: Balance ball exercise, Putter golf, Walking at 
6.0 km·h-1 on a motor-driven treadmill, and Resistance 
exercise with two dumbbells (a dumbbell was 3.0 kg for 
men, 1.0 kg for women). 
Six participants (3 women) performed all four routines, 

five participants (2 women) performed three routines, and 
three participants (2 women) performed two routines. 
Oxygen uptake (V• O2) was measured continuously 
throughout the routine by an indirect calorimeter (IC; 
MetaMax-3B; Cortex, Leipzig, Germany). Participants 
wore the LC and the ViM on the non-dominant side hip 
and wrist for the duration of the routine. All routines 
were performed in a physiology laboratory. Bicycle 
pedaling was performed to verify the accuracy of the IC, 
the measurements of bicycle pedaling were not used for 
statistical analyses. V• O2 at bicycle pedaling (21.3±3.7 
ml·kg-1 ·min-1) showed close agreement with the predicted 
value (21.5 ml·kg-1·min-1) from the formula of the American 
College of Sports Medicine (2000). Participants performed 
one routine in one day. The duration of each activity in 
a routine was 10 min, except the Dynamic stretch and 
Harvard step test, which were each approximately 3 min. 
First, each participant was seated on a comfortable chair 
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for 15 min. Then each performed each activity with 5 
min intervening rests. The participants were required to 
establish their own pace and maintain it throughout each 
10 or 3 min. The order of routines was randomized.

2.3. Equipment

ViM. The ViM sports memory wristband Version 2.1.0 
(Microstone, Saku, Japan) is 6.5 cm wide, 7.5 cm high, 
1.5 cm thick, and 100 g. The ten motion patterns of the 
ViM are as follows: Very Slow Walking, Slow Walking, 
Normal Walking, Brisk Walking, Jogging, Running, 
Light Irregular Activity, Moderate Irregular Activity, 
Heavy Irregular Activity, and Rest. Details of the 
algorithm are shown in Table 1. However, cut off-points 
of each category are not disclosed. According to technical 
details provided by the manufacturer, this device samples 
vertical acceleration and the angular velocity of the arm 
every 50 ms. Dynamic ranges of the acceleration and the 
angular velocity are, respectively, 0.05–2.00 G and 0–300 
deg·s-1. The frequency response is 0.25–20 Hz. The time 
period is 2 s. The ViM analyzes 10 patterns of physical 
activity, and records the sum of frequencies of each 
activity pattern every 30 or 180 s. In this study, 30 s mode 
was selected.
Lifecorder EX. The Lifecorder EX (Suzuken Co. Ltd., 
Nagoya, Japan), which weighs 60 g, is 7.25 cm wide × 4.15 
cm high × 2.75 cm long. During recording, the LC samples 
vertical acceleration with sampling frequency of 32 Hz 
using a ceramic piezoelectric uniaxial accelerometer. The 
dynamic range of the accelerometer is 0.06–1.94 G. The 

accelerometer signal proceeds through an analogue band 
pass filter. It is then digitized. Maximum acceleration 
greater than 4 s is recorded as activity intensity. Activities 
are categorized into 11 activity levels (arbitrary unit).
Indirect calorimeter. The MetaMax-3B measurements 
(Volger et al., 2010), described in MET, were used as 
the validity criteria. The IC measures breath-by-breath 
ventilation (V• E), concentration of expired oxygen (FEO2), 
and carbon dioxide (FECO2). The IC was calibrated before 
each test. The turbine flow meter (range: 0.05–2.00 L·s-1) 
was calibrated with a 3.0-L calibration syringe, and the 
O2 and CO2 analyzers were calibrated with room air and 
a calibration gas of known O2 (15.94%) and CO2 (3.97%) 
composition. 

2.4. Data Treatment

Internal clocks of the IC, LC and ViM were initialized 
and set to the standard time before each test. After 
downloading data as CSV format from each software, 
all measurements were converted to synchronize the unit 
time as 1 min: The ViM outputs, recorded every 30 s, were 
summed for 1 min. The LC activity levels, recorded every 
4 s, were averaged for 1 min. The IC breath-by-breath 
data were averaged every 60 s except the Dynamic stretch 
and Harvard step test. During both of Dynamic stretch 
and Harvard step test, the breath-by-breath data were 
averaged every 30 s. To compare the respective devices, 
all measurements were converted to MET. Oxygen uptake 
was converted to MET using the following equations:

Table 1. The algorithm of the ViM sports memory.
Category Acceleration Angular velocity Periodicity

Very Slow Walking Low Very low Present

Slow Walking Low Low Present

Normal Walking Low Moderate Present

Brisk Walking Low High Present

Jogging Moderate Moderate Present

Running High Moderate Present

Light Irregular Activity Low Irregular None

Moderate Irregular Activity Moderate Irregular None

Heavy Irregular Activity High Irregular None

Rest Very low Irregular None

This material is provided by the manufacturer (Microstone Co., Saku, Japan).
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MET = V• O2 (ml·kg-1·min-1) ÷ 3.5       (Eq. 1)

Table 2 presents details of each equation to estimate 
MET of the LC and ViM. The estimated MET of the LC 
was calculated using methods described by Kumahara et 
al. (2004a) (LC1) and by Takahashi et al. (LC2). Estimated 
MET of the ViM was calculated using the manufacturer’s 
software (ViM1) and the method described by Takahashi 
et al. (ViM2). For calculation estimates of the ViM1, 
the energy expenditure (kcal) estimated using the 
manufacturer’s software was converted to MET. However, 
details of the equation were not disclosed. To ensure the 
steady state of each MET, all measured and estimated 
MET were averaged for the last 7 min of each activity, 
except Dynamic stretch and Harvard step test. MET at 
Dynamic stretch and Harvard step test were selected for 
last 30 s.

2.5. Statistical Analysis

Statistical analyses were conducted using software 
(IBM SPSS 19.0; SPSS Inc., Chicago, IL, USA). From the 
experimental design of this study, the dataset included 
some missing data because all of participants did not 
perform all activities. When there are missing data in a 
longitudinal dataset, normal repeated ANOVA, which uses 
the least squares method for calculation of parameters, 
omits missing data from the analysis procedure, and the 
result of repeated ANOVA is biased. It is known that mixed 
model, which uses the restricted maximal likelihood for 
calculation of parameters, is a better method than repeated 

ANOVA when analyzing a longitudinal dataset including 
missing data (Twisk, 2004). Therefore, each estimate and 
MET were compared using a two-way repeated ANOVA 
model in mixed model, in which the response variable 
was MET and the explanatory variables were methods 
(5 levels: IC, LC1, LC2, ViM1, and ViM2), types of 
activity (15 levels), the interaction of methods and types 
of activity, and the random intercept for each participant. 
If the interaction was significant, then we examined the 
differences of methods for each activity using a one-way 
repeated ANOVA model in mixed model with the random 
intercept for each participant. Mean differences between 
estimates and MET at each activity were assessed using 
regression coefficients (IC MET was set as a reference 
value) yielded by one-way repeated ANOVA models. The 
significance levels for the two-way and one-way repeated 
ANOVA models were p = 0.05.

We also considered the root mean squared error 
(RMSE) as well as mean differences between estimates 
and MET. In fact, RMSE is similar to the mean of the 
absolute differences whereas the mean difference is the 
aggregation of negative and positive differences. When 
both negative and positive errors exist for an activity, the 
mean difference is smaller than the actual magnitude 
of errors because of offset. RMSE shows the mean 
magnitude of errors.

3. Results

Figure 1 shows the relationships between the measurements 
by the IC and four estimates by each method. Table 3 

Table 2. Estimation equations of MET by the Lifecorder EX and the ViM sports memory.

Source Modeling method Equations R2 and SEE

LC1 Kumahara et al. (2004a) Linear regression R2 = 0.93, SEE = 0.46 MET

LC2 Takahashi et al. (2012) Mixed model R2 = 0.86, SEE = 0.99 MET

ViM1 Manufacture’s software Undisclosed Undisclosed

ViM2 Takahashi et al. (2010) Mixed model Male: R2 = 0.74, SEE = 1.51 MET 

Female: R2 = 0.84, SEE = 1.16 MET 

LC, Lifecorder EX; R2 , coefficient of determination; SEE, standard error of estimate; xLC, outputs of Lifecorder EX (activity levels); estimated EE, estimated energy expenditure   

(kcal·min-1) by manufacture’s software that does not disclosed details of the equation; xViM1, sum of outputs of Very Slow Walking, Slow Walking, Normal Walking, and Light  

Irregular Activity in the ViM (frequencies·min-1); xViM2, outputs of Brisk Walking in the ViM; xViM3, sum of outputs of Jogging and Moderate Irregular Activity in the ViM; xViM4,    

sum of outputs of Running and Heavy Irregular Activity in the ViM (frequencies·min-1).

MET  =  0.043 · xLC
2 + 0.379 · x + 1.361

MET  =  0.048 · xLC
2 + 0.508 · x + 1.007

Male:   MET  =  0.07 · xViM1 + 0.13 · xViM2 + 0.22 · xViM3 + 0.32 · xViM4 + 1.22

Female:  MET  =  0.08 · xViM1 + 0.13 · xViM2 + 0.19 · xViM3 + 0.31 · xViM4 + 1.30

MET  = 
200 · estimated EE 
3.5 · body weight
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presents means and standard deviations of MET and 
each estimate for each activity. The five methods were 
compared by two-way ANOVA model in mixed model. 
Significant interaction was found (F (56.0, 751.9) = 11.6, p 
< 0.001). The results of one-way repeated ANOVA models 
revealed that main effects of the methods were significant 
for all activities (F (4, 44) ≥ 7.8, p < 0.001 at N = 12; F (4, 
40) ≥ 13.9, p < 0.001 at N = 11; F (4, 36) ≥ 11.7, p < 0.001 
at N = 10).

Table 4 shows the mean differences (estimates 
minus MET) for each activity. The LC1 significantly 
underestimated MET for all activities (p ≤ 0.008). The 
difference between MET and the LC2 was not significant 
at Walking (p = 0.505), but the LC2 significantly 
underestimated MET during other activities (p < 
0.001). The ViM1 significantly underestimated MET 
for all activities (p < 0.001) except Walking, the ViM1 
significantly overestimated MET (p < 0.001) during 
Walking. For ViM2, no significant difference was found 
for Dynamic stretch, Darts, Active video game (boxing), 
and Walking (p ≥ 0.162), although ViM2 underestimated 
measurements for other activities significantly (p ≤ 
0.002).

Table 4 also presents the RMSE. When investigating 
activities for which there were no significant differences 
between MET and estimates, the RMSE of the LC2 
at Walking was 0.24 MET. For ViM2, RMSEs were, 
respectively, 0.71 MET at Dynamic stretch, 1.21 MET at 
Darts, 0.84 MET at Active video game (boxing), and 0.60 
MET at Walking.

4. Discussion

Major Findings. In this study, we compared the ViM 
with the LC during activities of various types. Our 
results show that the ViM2 can assess MET during 
Dynamic stretch, Darts, Active video game (boxing) 
and Walking accurately. Moreover, given the 95% 
confidence interval (95%CI) of errors in Table 3, errors 
of ViM2 during Jump-rope, Dumbbell exercise, and 
Static stretch are significantly smaller than those of the 
LC1 and the LC2. These results show the ViM can assess 
MET during non-locomotive activities more accurate 
than the LC. The wrist, as a location for placement of a 
typical uniaxial accelerometer, is known to be inferior 
to the hip (Kumahara, et al., 2004b; Swartz et al., 2000). 

Swartz et al. reported that addition of the wrist uniaxial 
accelerometer (Actigraph) outputs improved the accuracy 
of the hip accelerometer outputs estimate by only about 
3.0%. Kumahara et al. (2004b) also reported that it 
improved only 2.6% of the accuracy to add the wrist 

Figure 1. Two plots show the relationships between 
measurements by the IC (Y axis) and four estimates (X 
axis): (A) LC1, (B) LC2, (C) ViM1, and (D) ViM2. For 
each plot, dash line is identity line (y = x).
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uniaxial accelerometer (LC) outputs to the outputs of 
the hip. Uniaxial accelerometers sensitively detect even 
negligible upper-limb activity that is not related to a main 
part of physical activity energy expenditure. Therefore, 
the linear relationship between the wrist accelerometer 

outputs and energy expenditure deteriorates more than 
the waist accelerometer outputs.

The ViM2 showed smaller errors than both LC 
derivations. Although the ViM is a wrist-placed 
device, the ViM algorithm differs from typical uniaxial 

Table 4. Mean differences (95%CI) and RSEM for each estimation method; results are shown for each activity.

Table 3. Means (SD) for metabolic equivalent (MET) and estimates; results are shown for each activity.

Activity LC1 LC2 ViM1 ViM2

Difference RMSE Difference RMSE Difference RMSE Difference RMSE

Kendama (N = 12) -0.53 (-0.69, -0.38) 0.56 -0.82 (-0.97, -0.67) 0.82 -1.16 (-1.32, -1.01) 1.16 -0.58 (-0.73, -0.43) 0.61 

Active video game (tennis) (N = 12) -0.65 (-0.90, -0.40) 0.65 -0.93 (-1.18, -0.69) 0.93 -1.06 (-1.31, -0.81) 1.06 -0.49 (-0.74, -0.24) 0.50 

Dynamic stretch (N = 12) -1.26 (-1.61, -0.92) 1.27 -1.49 (-1.84, -1.14) 1.49 -0.69 (-1.03, -0.34) 0.85 0.24 (-0.10, 0.59)* 0.71 

Jump-rope (N = 12) -3.19 (-3.67, -2.70) 3.19 -2.94 (-3.42, -2.46) 2.93 -3.03 (-3.51, -2.54) 3.03 -1.71 (-2.20, -1.23) 1.71 

Static stretch (N = 11) -0.76 (-0.97, -0.55) 0.76 -1.04 (-1.25, -0.83) 1.04 -1.25 (-1.46, -1.03) 1.25 -0.58 (-0.79, -0.37) 0.62 

Active video game (baseball) (N = 11) -0.74 (-1.09, -0.39) 0.77 -1.02 (-1.37, -0.67) 1.02 -1.17 (-1.52, -0.82) 1.16 -0.56 (-0.91, -0.21) 0.68

Harvard step test (N = 11) -3.70 (-4.30, -3.11) 3.70 -3.39 (-3.99, -2.79) 3.39 -4.81 (-5.41, -4.21) 4.81 -4.18 (-4.78, -3.58) 4.18

Table tennis (N = 11) -1.96 (-2.50, -1.42) 1.96 -2.18 (-2.72, -1.64) 2.18 -1.85 (-2.39, -1.31) 1.85 -1.16 (-1.70, -0.62) 1.26

Darts (N = 12) -1.02 (-1.66, -0.38) 1.02 -1.29 (-1.92, -0.65) 1.29 -0.69 (-1.33, -0.05) 1.35 0.14 (-0.50, 0.78)* 1.21 

Ball juggling (N = 12) -1.32 (-1.63, -1.01) 1.32 -1.53 (-1.84, -1.23) 1.53 -1.62 (-1.93, -1.31) 1.62 -0.98 (-1.28, -0.67) 0.98

Active video game (boxing) (N = 12) -1.04 (-1.56, -0.51) 1.04 -1.16 (-1.68, -0.63) 1.16 -1.00 (-1.53, -0.48) 1.10 -0.13 (-0.65, 0.40)* 0.84 

Balance ball exercise (N = 10) -1.11 (-1.47, -0.75) 1.13 -1.26 (-1.62, -0.89) 1.26 -1.64 (-2.00, -1.27) 1.64 -0.89 (-1.25, -0.52) 1.01

Golf putting (N = 10) -0.86 (-1.01, -0.72) 0.86 -1.15 (-1.29, -1.00) 1.14 -1.60 (-1.74, -1.46) 1.60 -1.07 (-1.22, -0.93) 1.07

Walking (N = 10) -0.53 (-0.90, -0.12) 0.61 -0.12 (-0.51, 0.26)* 0.24 0.74 (0.35, 1.13) 0.98 0.04 (-0.35, 0.43)* 0.60

Dumbbell exercise (N = 10) -1.38 (-1.55, -1.21) 1.38 -1.63 (-1.80, -1.46) 1.63 -1.69 (-1.86, -1.52) 1.69 -1.00 (-1.17, -0.83) 1.00

Total [pooled data] (N = 168) -1.33 (-1.51, -1.15) - -1.46 (-1.63, -1.30) - -1.50 (-1.71, -1.28) - -0.84 (-1.05, -0.63) - 

CI, confidence interval; RMSE, root mean squared error; LC1, the Lifecorder EX derivations by Kumahara et al (2004a)’s method ; LC2, the Lifecorder EX derivations 

by Takahashi et al (2012)’s method; ViM1, the ViM derivations by the manufacture’s software; ViM2, the ViM derivations by Takahashi et al (2010)’s method. 

Asterisks (*) show not significant difference from measured MET (p > 0.05).

Activity MET LC1 (MET) LC2 (MET) ViM1 (MET) ViM2 (MET) 

Kendama (N = 12) 2.10(0.38) 1.59(0.03) 1.29(0.03) 0.94(0.09) 1.54(0.14)

Active video game (tennis) (N = 12) 2.21(0.43) 1.58(0.04) 1.28(0.04) 1.15(0.50) 1.74(0.44)

Dynamic stretch (N = 12) 3.01(0.65) 1.77(0.09) 1.54(0.12) 2.33(0.47) 3.27(0.70)

Jump-rope (N = 12) 6.78(1.28) 3.60(0.21) 3.86(0.26) 3.75(0.24) 5.07(0.52)

Static stretch (N = 11) 2.33(0.50) 1.61(0.03) 1.31(0.03) 1.10(0.17) 1.78(0.26)

Active video game (baseball) (N = 11) 2.30(0.8) 1.60(0.00) 1.30(0.00) 1.13(0.32) 1.75(0.37)

Harvard step test (N= 11) 7.58(1.21) 3.88(0.48) 4.19(0.58) 2.78(0.41) 3.42(0.49)

Table tennis (N = 11) 3.76(0.82) 1.77(0.13) 1.57(0.16) 1.89(1.11) 2.60(1.32)

Darts (N = 12) 2.64(0.52) 1.63(0.07) 1.38(0.09) 1.96(1.15) 2.79(1.43)

Ball juggling (N = 12) 3.12(0.85) 1.80(0.09) 1.59(0.14) 1.50(0.24) 2.14(0.26)

Active video game (boxing) (N = 12) 3.18(0.93) 2.16(0.42) 2.03(0.55) 2.18(0.76) 3.04(0.89)

Balance ball exercise (N = 10) 3.15(0.59) 2.05(0.30) 1.90(0.34) 1.51(0.30) 2.25(0.45)

Golf putting (N = 10) 2.42(0.38) 1.60(0.00) 1.30(0.00) 0.83(0.07) 1.35(0.11)

Walking (N = 10) 5.01(0.86) 4.51(0.54) 4.87(0.67) 5.75(0.36) 5.06(0.43) 

Dumbbell exercise (N = 10) 3.03(0.29) 1.65(0.05) 1.41(0.09) 1.34(0.22) 2.03(0.34) 

LC1, the Lifecorder EX derivations by Kumahara et al (2004a)’s method; LC2, the Lifecorder EX derivations by Takahashi et al (2012)’s method; ViM1, the ViM derivations

by the manufacture’s software; ViM2, the ViM derivations by Takahashi et al (2010)’s method. 
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accelerometers in that the ViM assesses the intensity 
of physical activity using a gyro-sensor and an 
accelerometer. Because the algorithm can distinguish 
walking, running, and non-locomotive activity, it appears 
that the deterioration of the linear relationship between 
the device outputs and MET in the ViM is less than in 
uniaxial accelerometers.
ViM. Takahashi et al. (2009) reported that ViM1, which 
uses the manufacturer’s software, was able to assess 
physical activity energy expenditure more accurately 
than the LC during two non-locomotive activities, static 
stretch, and hopscotch. As shown in results of this study, 
during Dynamic stretching with motion resembling 
hopscotch, errors of the ViM1 were smaller than those 
of the LC derivations. However, during Static stretch, the 
mean difference and RMSE of the ViM1 were larger than 
the two LC derivations. These inconsistent results appear 
to be attributable to the individuality of Static stretch 
movements.

The ViM categorizes body motions as ten patterns using 
angular velocity, vertical acceleration of arm movements, 
and periodicity of these movements. Takahashi et al. 
(2009) reported that the ViM algorithm can distinguish 
changes in arm movements for each, but the ViM cannot 
distinguish the individuality of arm swinging. Because 
the individuality of arm swing movements is large, the 
ViM outputs might be different every individuals even if 
performing the same type activity. That fact might have 
influenced the results by which women participated in 
this study, whereas the participants in the earlier study 
were men only.

However, ViM2 showed smaller errors than the LC 
during both of Static stretching and Dynamic stretching. 
In equations by Takahashi et al. (2010), each ViM output 
was aggregated based on the magnitude of acceleration 
to minimize the influence of the large individuality of 
arm swing movements. The result that the ViM2 was 
able to estimate MET better than the ViM1 supports the 
hypothesis that the ViM outputs are strongly influenced 
by the large individuality of arm movements.

In recent years, various estimation methods have been 
developed to improve the accuracy of accelerometers 
during non-locomotive activity (Crouter et al., 2006; 
Crouter et al., 2010; Ohkawara et al., 2011). Lyden et al. 
(2011) compared four methods (two methods from Crouter 
et al., 2006; Freedson et al., 1998; Swartz, 2000) using 

the Actigraph, which is a typical uniaxial accelerometer. 
Lyden et al. (2011) reported that the method reported by 
Crouter et al., the so-called two-regression model, was 
more accurate than other Actigraph derivations during 
non-locomotive activity. Before developing the two-
regression model by Crouter et al. (2006), estimation 
models had been developed based on the assumption 
that the relationship between accelerometer outputs and 
MET is linear throughout locomotive and non-locomotive 
activity (Freedson et al., 1998; Hendelman et al., 2000; 
Swartz et al., 2000), although it had been known that 
the relationship differs for types of activities and that 
the relationship is not linear (Hendelman et al., 2000). 
Crouter et al. (2006) developed the two-regression model 
by distinguishing activity types from the coefficient of 
variation of minute-by-minute accelerometer outputs and 
by applying nonlinear regression (exponential model) 
for locomotive and non-locomotive activities. Crouter et 
al. (2006) demonstrated that the approach can improve 
the accuracy of the Actigraph. Ohkawara et al. (2011) 
also reported a similar approach, which distinguishes 
activity types and which uses a nonlinear regression 
model (exponential model), can enhance the accuracy of a 
triaxial accelerometer.

Regarding the results reported by Lyden et al., mean 
differences of the two-regression model were -4.0 to 0.1 
MET, and RMSEs were 0.50 to 4.4 MET. In this study, 
mean differences (-4.18 to 0.14 MET) and RMSEs (0.5 to 
4.18 MET) of ViM2 showed comparable accuracy with 
that of the two-regression model, although the estimation 
equations used in the ViM2 were developed using linear 
regression (see Table 2). These results indicate that the 
algorithm of the ViM can distinguish activity types 
correctly. Given these results, the ViM is the more 
suitable device than the LC for non-locomotive activity. 
However, the ViM accuracy is equal to that of other 
accelerometer methods. When considering the usefulness 
of devices, other methods such as the Actigraph using 
a two-regression model is more informative than ViM 
because the algorithm of the ViM is undisclosed and 
researchers cannot find raw outputs for acceleration and 
angular velocity.
Lifecorder EX. In fact, LC is the most popular 
accelerometer in Japan (Ayabe et al., 2012; Ayabe et al., 
2013; Ihara et al., 2012). LC devices are often used by 
international researchers (Abel et al., 2009; Abel et al., 
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2008; McClain et al., 2007; McClain et al., 2007; Van 
Remoortel et al., 2012). The LC is known as an accurate 
device for measuring step counts and energy expenditure 
during locomotive activity (Abel et al., 2008; Crouter et 
al., 2003; Kumahara et al., 2004a; Takahashi et al., 2012). 
However, when using the LC for activity of daily living 
conditions, it reportedly underestimates physical activity 
intensity considerably compared with the some Actigraph 
derivations that were calibrated for non-locomotive 
activities (Abel et al., 2009; McClain et al., 2007).

This study examined the accuracy of LC and ViM during 
non-locomotive activities. The LC1 underestimated MET 
significantly during all 15 activities; mean differences 
were -3.70 to -0.53 MET. Similarly, LC2 markedly 
underestimated MET during all activities except Walking; 
mean differences were -3.39 to -0.12 MET. The estimation 
equation presented by Takahashi et al. used in LC2 was 
developed using data of both men and women, whereas 
the equation reported by Kumahara et al. used in the LC1 
was developed using data only of men. Perhaps for that 
reason, small differences were found between the two LC 
derivations.

Although small differences existed between the LC1 
and the LC2, two LC derivations had common features 
by which the absolute values of mean differences and 
RMSEs were approximately equal. The result that 
mean differences and RMSE were equal for the two LC 
derivations indicates that LC consistently underestimates 
MET during non-locomotive activities. The results of 
Lyden et al. (2011) show that the absolute values of mean 
differences and RMSEs of methods of the Actigraph using 
linear regression technique differed more than 0.1 MET 
during most non-locomotive activities. Although the LC 
is the uniaxial accelerometer placed on the hip as well as 
the Actigraph; and while the dynamic ranges of the LC 
(0.06–1.94 G) and the Actigraph (0.05–2.00 G) are almost 
identical, differences between absolute mean differences 
and RMSEs of the LC derivations in this study were less 
than 0.05 MET. This result demonstrates that the LC has 
more consistent systematic bias than the common uniaxial 
accelerometer.

Generally, for accelerometers, acceleration (voltage 
signal) is digitized (raw outputs) and converted to full-
wave rectification. The integration algorithm then sums 
the converted raw outputs that is called "counts". However, 
the unit of the LC is not “counts” but the “activity level” 

(arbitrary unit), and the conversion process to “activity 
level” is not disclosed. It can be inferred that the LC 
data processing is the reason that the LC systematically 
underestimates physical activity energy expenditure 
during non-locomotive activity.
Limitations. This study has several limitations. A first 
limitation is on the method. We chose 14 activities as a 
non-locomotive activity. The types of activities chosen 
in this study are generally not categorized as “free-living 
activities” but as “sports and leisure activities”. We think 
that the results of this study can be applied for “free-
living activity”, because when investigating an accuracy 
of an accelerometer during non-locomotive activity, the 
difference of “free-living activities” and “sports and 
leisure activities” measured by an accelerometer appears 
to be negligible (Crouter et al., 2006; Crouter et al., 2010; 
Freedson et al., 2011). However, it might be a limitation 
that we did not measure “free-living activities”. 

A second limitation is the accuracy of the indirect 
calorimeter (MetaMax 3B). Volger et al. (2010) reported 
that the MetaMax 3B significantly overestimated Douglas 
bag method around 4.0%. True value of MET might be 
slightly different form MET measured by the MetaMax 
3B.
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